Iterative Regularized Solution of Symmetric and Positive Semi-Definite Linear Complementarity Problems

نویسندگان

  • C. Popa
  • T. Preclik
  • U. Rüde
چکیده

In this report an iterative method from the theory of maximal monotone operators is transfered into the context of linear complementarity problems and numerical tests are performed on contact problems from the field of rigid multibody dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Matrix Splitting Method for the Second-Order Cone Complementarity Problem

Given a symmetric and positive (semi)definite n-by-n matrix M and a vector, in this paper, we consider the matrix splitting method for solving the second-order cone linear complementarity problem (SOCLCP). The matrix splitting method is among the most widely used approaches for large scale and sparse classical linear complementarity problems (LCP), and its linear convergence is proved by [Luo a...

متن کامل

A matrix-splitting method for symmetric affine second-order cone complementarity problems

The affine second-order cone complementarity problem (SOCCP) is a wide class of problems that contains the linear complementarity problem (LCP) as a special case. The purpose of this paper is to propose an iterative method for the symmetric affine SOCCP that is based on the idea ofmatrix splitting.Matrix-splittingmethods have originally been developed for the solution of the system of linear eq...

متن کامل

Modulus-based GSTS Iteration Method for Linear Complementarity Problems

In this paper, amodulus-based generalized skew-Hermitian triangular splitting (MGSTS) iteration method is present for solving a class of linear complementarity problems with the system matrix either being an H+-matrix with non-positive off-diagonal entries or a symmetric positive definite matrix. The convergence of the MGSTS iterationmethod is studied in detail. By choosing different parameters...

متن کامل

A full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem

‎A full Nesterov-Todd (NT) step infeasible interior-point algorithm‎ ‎is proposed for solving monotone linear complementarity problems‎ ‎over symmetric cones by using Euclidean Jordan algebra‎. ‎Two types of‎ ‎full NT-steps are used‎, ‎feasibility steps and centering steps‎. ‎The‎ ‎algorithm starts from strictly feasible iterates of a perturbed‎ ‎problem‎, ‎and, using the central path and feasi...

متن کامل

An investigation of interior-point and block pivoting algorithms for large-scale symmetric monotone linear complementarity problems

In this paper we describe a computational study of block principal pivoting (BP) and interior-point predictor-corrector (PC) algorithms for the solution of large-scale linear complementarity problems (LCP) with symmetric positive definite matrices. This study shows that these algorithms are in general quite appropriate for this type of LCPs. The BP algorithm does not seem to be sensitive to bad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011